異常検知の実装方法
anomaly likelihood tutorial
import numpy as np
import math
from htm.bindings.sdr import SDR
from htm.bindings.encoders import ScalarEncoder, ScalarEncoderParameters
from htm.algorithms import SpatialPooler as SP
from htm.algorithms import TemporalMemory as TM
from htm.bindings.algorithms import Predictor
from htm.algorithms.anomaly_likelihood import AnomalyLikelihood
scalarEncoderParams = ScalarEncoderParameters()
scalarEncoderParams.minimum = -1
scalarEncoderParams.maximum = 1
scalarEncoderParams.activeBits = 4
scalarEncoderParams.size = 128
scalarEncoderParams.clipInput = True
enc = ScalarEncoder(scalarEncoderParams)
inputSDR = SDR( dimensions = (128, ) )
activeSDR = SDR( dimensions = (576,) )
sp = SP(inputDimensions = inputSDR.dimensions,
columnDimensions = activeSDR.dimensions,
localAreaDensity = 0.02,
globalInhibition = True,
seed = 1,
synPermActiveInc = 0.01,
synPermInactiveDec = 0.008)
tm = TM(
columnDimensions = (576,),
cellsPerColumn=8,
initialPermanence=0.5,
connectedPermanence=0.5,
minThreshold=8,
maxNewSynapseCount=20,
permanenceIncrement=0.1,
permanenceDecrement=0.0,
activationThreshold=8,
)
最終更新